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To solve problems, you first have to recognize the problem exists.




Agriculture is Responsible for 10.6% of GHG Emissions in US

The Greenhouse Effect

Some sunlight that hits Earth
IS reflected back into space,
while the rest becomes heat

Greenhouse gases absorb

and redirect heat radiated
by Earth, insulating it
from heat loss to space
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The Planet is Heating Up... Green House Effect

Temperature Anomaly ( C)
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Unpredictable rainfall with Longer more severe Water shortages
intense flooding droughts




Soil Degradation &
Soil Loss Crisis

US loses 1% of topsoil
every year

“Annual cost of erosion
from agriculture in USA
is S44 billion per year...”

S70/person per year

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soil
s/edu/college/?cid=nrcs142p2 054028



Groundwater aquifer
contamination is

a national
concern
Predicted nitrate 1 Median concentration
. concentration, in mg/L X of nitrate, in mg/L
http://nemwuppermiss.blogspot. I <i 10 o Low (<0.08)
_micciccinmi- [1>1-5 [ Missing data @ Medium (0.08-2.6)
com/2013/10/usgs-mississippi — o Hah(26)

river-nitrate-levels.html



More than 405
Dead Zones occupy
coastal waters
worldwide covering
95,000 square miles

https://robertscribbler.com/2015/05/05/ocean-dead-zones-swirl-off-

africa-threatening-coastlines-with-mass-fish-kills/

® Tl zones can suffocate i Hsh. smhdaﬁnuw*mm: I|||.- =
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The State of CA has ambitious GHG Reduction Goals:
AB 32/SB 32 - Limit GHG emissions to 40% below 1990 levels by 2030

Figure 1

State Has Met 2020 Goal, but 2030 Goal More Ambitious
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MMTCOZ2e = million metric tons of carbon dioxide equivalent.

Agriculture is 5th largest
source of GHG Emissions

5 T soil lost/year in US

Regenerative Agriculture
cuts emissions, reduces
erosion, rebuilds soil, and
sequesters carbon



We can't solve problems by using the same Rind
of thinking we used when we created them.

(Albert Einstein)

Izquotes.com




California
Department of Food
& Agriculture

Member of the CDFA
Working Group to
define Regenerative
Agriculture for the
purposes of
programming and
future funding
opportunities.

REGENERATIVE AGRICULTURE

IS an integrated approach to
farming and ranching rooted in
the principles of soil health
leading to improved target
outcomes.



Target Outcomes:

a) Build soil health, soil organic matter and biodiversity;

b) Restoration and maintenance of water resources;

c) Protection of air quality;

d) Sequestration and reduction of greenhouse gas emissions;

e) Use of sustainable and integrated pest management to eliminate reliance on
pesticides;

f) Improve nutrient cycling to reduce use of external fertilizers;

i) Improve/enhance human health and rural communities



Total Soil-Centric Acres in the US

* Agriculture 895 M acres * Landscaped areas: 40—50 M acres

+ Cropland = 390 M acres * Residential lawns = 40 M acres

e Golf courses =2 M acres

* Pasture & Range = 600 M acres * Public parks and commercial

landscaping = several million



RA based on the 5 core Soil Health Principles

5 Core Principles of Regenerative Agriculture 3 Key Outcomes
MINIMIZE KEEP THE SOIL INTEGRATE
SOIL DISTURBANCE COVERED LIVESTOCK Improve soil health

Foster biodiversity

Promote economic
resilience in farming
communities

MAXIMILE MAINTAIN LIVING
CROP DIVERSITY ROOT YEAR-ROUND




Tools in the RA Toolbox

- - Crop
' Rotation |




Carbon Farming/Regenerative AG ™ Conventional Agriculture



Change the Paradigm

Standard practice Diverse, enlivened, resilient, nutrient dense




Change the Paradigm

Standard practice Diverse, enlivened, resilient, nutrient dense
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“System-based RA reconciles the need of
producing adequate and nutritious food with
the necessity of restoring the environment,
making farming a solution to environmental

]

issues.”

Rattan Lal



Regenerative Farmer — Gabe Brown — North Dakota




Layering RA Practices May be Synergistic

*No-Till/Minimum Till
“**Multi-Species Cover Crops
Stacking Practices % Crop Rotation
s*Compost Applications
s* Adaptive Multi-paddock Grazing

*Maximizing diversity



Gabe Brown's Soil Carbon Data

y=0.56x-5.69

y=0.11x+0.96 22.63 tons C/ha/year
4.86 tons C/ha/year

J

-Species Cover Crops

No-Till
Cover Crops

S
-
0
N

Crop Diversity

3% Soil Organic Matter
(1.72% Soil C)

Livestock Integration

Multi

O = N W B U O

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu



DIVERSE

MONOCULTURE




Liquid Sun: Roots Leaking Exudates!

CaliforniaState
University Chico
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In just 8 cm of soil,
The weight of
bacteriain 1

thereare13

quadrillion living 8(:]]1
hectare of soil

is equivalent ha
to the weight

organisms
of 2 cows

There are more B s
P e drar e Soil contains
AreReopieondet) the most (11V€1:S€
terrestrial

‘!\B communities

on the planet

%y Food and Agriculture i
Qﬁ Organization of the & GLOBAL SOIL
United Nations



Quorum Sensing

Many bacteria use a cell-cell communication system called quorum
sensing to coordinate population density-dependent changes in
behavior. In many species, quorum sensing modulates virulence
functions and is important for pathogenesis. Over the past half-
century, there has been a significant accumulation of knowledge of
the molecular mechanisms, signal structures, gene reqgulons, and
behavioral responses associated with quorum-sensing systems in
diverse bacteria.

https://mbio.asm.org/content/9/3/e02331-17#



Quorum sensing OFF Quorum sensing ON

Biofilm formation
Virulence factors
Synchronized behaviour

, W serrta
’“\\ Cross-talk

Quorum Sensing: ., a3 Eavescropping
Signaling B
between AHLS

microbes -

Target genes Target genes
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C Exporting ® ° Importing Exporting
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RHIZOPHAGY CYCLE

| '.'.-fhl-ilzdi':HAGY CYCLE

. MICROBES EXIT ROOT HAIRS
1) © REPLENISHED OF NUTRIENTS
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NUTRIENTS ARE EXTRACTED
FROM MICROBES BY REACTIVE 02 RE- UPTJ’IKE OF NUTRIENTS FROM

THE RHIZOSPHERE BY MICROBES
g : BEs

MICROBES ENTER ROOT TISSUES
CARRYING NUTRIENTS FROM THE SOIL
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Rhizophagy Cycle: An Oxidative Process in Plants for
Nutrient Extraction from Symbiotic Microbes
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Abstract: In this paper, we describe a mechanism for the transfer of nutrients from symbiotic
microbes (bacteria and fungi) to host plant roots that we term the ‘rhizophagy cycle.” In the
rhizophagy cycle, microbes alternate between a root intracellular endophytic phase and a free-living
soil phase. Microbes acquire soil nutrients in the free-living soil phase; nutrients are extracted through
exposure to host-produced reactive oxygen in the intracellular endophytic phase. We conducted
experiments on several seed-vectored microbes in several host species. We found that initially the
symbiotic microbes grow on the rhizoplane in the exudate zone adjacent the root meristem. Microbes
enter root tip meristem cells—locating within the periplasmic spaces between cell wall and plasma
membrane. In the periplasmic spaces of root cells, microbes convert to wall-less protoplast forms. As
root cells mature, microbes continue to be subjected to reactive oxygen (superoxide) produced by
NADPH oxidases (NOX) on the root cell plasma membranes. Reactive oxygen degrades some of the
intracellular microbes, also likely inducing electrolyte leakage from micrnbes—effectivel}r extracting
nutrients from microbes. Surviving bacteria in root epidermal cells trigger root hair elongation
and as hairs elongate bacteria exit at the hair tips, reforming cell walls and cell shapes as microbes
emerge into the rhizosphere where they may obtain additional nutrients. Precisely what nutrients
are transferred through rhizophagy or how important this process is for nutrient acquisition is



Mycorrhizal Fungi

Help plants take up water and nutrients
Improve nitrogen fixation by legumes
Help to form stable aggregates

Help plants resist fungal diseases and
parasitic nematodes, drought, salinity and
aluminum toxicity

Have been show to stimulate free-living

nitrogen-fixing bacterial azotobacter - in
turn stimulates plant growth-stimulating
chemicals




plant root structure

Fungal species become a part of the

Symbiosis interface

|

'."' .r... : ... .-: .:
vl o ol = f

| |
epidermis hypodermis cortex

Physiological changes

PAM #)

*“:_._ / o 1___:_' J.‘.rg,'; tose &
PAS .'-\.: ' v I-I’IIH e
Fungal plasma | 4 77 aa
membrane =

“ Fungal cytoplasm

@ plastid

mitochondria

Metabolic changes

Increased sugar content in cytosol
of root cortex

Increased
Increased fatty photosyrthesis in
acid, amino acid, leaves
cartenoid, &
terpenoid
hins*,rrvresis
Increased
Increased jasmonic TCA C\’C!E
ocid & phytoalexin
production
0 :
Nl Decreased gallic

\_\

0=
UH

acid production







Biofilms provide
anaerobic environment
for nitrogen fixing
bacteria




Free-living

(a) diverse array of N-fixers
(b) DOC

microbially driven

Nitrogen Paradox
Free Living Nitrogen Fixing Bacteria

Symbiotic

Oxygen Concentration

Low ..< High

(a) population of N-fixers
(rhizobia, frankia)

(b) C(e.g. succinate)
NH,” _ (90,

&
* (e) (d) nutrients
nitrogenase )
A 8 ]
Amino 48
A

plant-driven

Some nitrogen fixing organisms

Free living aerobic bacteria * Free living associative bacteria
— Azotobacter — Azospirillum

— Beijerinckia

— Klebsiella

— Cyanobacteria (lichens)

Free living anaerobic bacteria * Symbionts

— Clostridium — Rhizobium (legumes)
— Desulfovibrio — Frankia (alden trees)
— Purple sulphur bacteria

— Purple non-sulphur bacteria

— Green sulphur bacteria



Soil Aggregation/ Slake Test

Conventional No-Till  Minimum Conventional No-Till Pasture
Till till Till




Signs of Regenerative Farming Practices

MaCropone




Regenerative Agriculture Farming Research in the
Palo Verde Valley

Metropolitan Water District Project in Collaboration with Hay Day Farms
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Significant Difference in Soil Temperature Down to 12”

Soil Temperature 0-4" by Treatment Soil Temperature 4-8" by Treatment Soil Temperature 8-12" by Treatment
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Regenerative Practices Enhances TMB (ng/g)

More diverse biology created within this regenerative system

Total Microbial Biomass ng/g
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Regenerative Practices Enhances

This sets the stage for soil aggregation and soil carbon accrual
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Regenerative Practices Enhances
Arbuscular Mycorrhizal Fungi %
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Changes in Soil Tilth

2022 Aggregate Stability

Treated

conventional till corn: perennial sod;

low organic matter high organic matter

Sl samples collecred from 20 year old convenrional ill corn
ard perenmiol Muegrasy sod systenrs were saturated with water
atnd allowed fe dry. Nete the soil crusting in the low organic
marter conventiona! il sample coompared fo the abundance of
stble agoregares v e high organic maiter perennial sod
sample. Phote conrtesy Ray K. Weil, Universiny of Mardanad.



Changes in Soil Tilth

2022 Bulk Density g/cm3

1.35
1.3

1.25

Bulk density,

o) P

1.2

Soil porosity

1.15

0 I 2 4 8 |6 60
Number of species

1.1
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Changes in Soil Tilth

Control

2022 Water Infiltration cm/sec

Treated



Carbon (0”- 4" soil depth) by Treatment 2022

Carbon Regenerative Conventional
7 SON 3.4+0.19° 3.08+0.17
% MAC 48.1 +10.6 2 28.64 +8.3°
CO,-C 86 +18.33 68.14 + 29.5
% Total Carbon 4.07 £ 0.182 3.62 + 0.02°




Changes in Soil Tilth
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Effective Rainfall — how much water infiltrates/min?
This rain event = 0.15” of rain

P——— _F =3 o ‘
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For every 1% increase in SOM:
Increase water holding capacity by 25,000 gallons/acre

=

i




The California Soil Carbon &%

° The Center for
REGENERATIVE AGRICULTURE
C C r u a rOJ e C AND RESILIENT SYSTEMS

CALIFORNIA STATE UNIVERSITY, CHICO

John Knowles, Jake Brimlow, Garrett Liles, Sandrine
Matiasek, Patty Oikawa, Logan Smith, Cindy Daley

CALIFORNIA

STATE
CaliforniaState UNIVERSITY,
UniversityChico EAST BAY



Conventional Regenerative
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Palo Verde, California
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Consistent Design
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9194 : : | | i | Peas, vetch, and daikon
Regenerative . S
\\]\\\\\?‘@ 0.08 - ; cover crop mix, Hayday
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Plant Cover crop

Cut

Plant Cover crop

. PlaneTeff

Evapotranspiration (mm)

Regenerative

2023-11

_PlantTeff
- _Combine
_Fallow

Evapotranspiration (mm)
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Net Ecosystem Exchange
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PLFA data on SCAP PV Site - Year 1

Regenerative Standard

Total Fungi, PLFA ng/g 70.64 + 14.27° 41.28 + 6.4°
Total Fungi, % of Total Biomass 4.77 +1.252 2.05+0.28
Arbuscular Mycorrhizal Fungi ng/g 35.83 £ 8.122 17.76 + 3.14°
AM, % of Total Biomass 2.61 + 0.86° 0.88 + 0.16°
Saprophytic Fungi ng/g 34.81 + 7.932 23.52 +3.47°
Saprophytic Fungi, % of Total

Biomass 2.15 + 0.48° 1.17 £ 0.15°




Regenerative Agriculture

»RA improves all cropping systems

»RA improves all management systems

»It’s a proven Nature Based Solution to the Climate Crisis
»RA as the new normal

»The time is now



Help us feed the world
while we save the planet...
Get Involved in Regenerative Agriculture

Food Hub & Marketing Field Monitoring Laboratory Experience
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